De todos los fenómenos físicos, los relacionados con la luz posiblemente sean los más fascinantes e intrigantes. Las preguntas ¿qué es la luz?, ¿cómo es posible la visión?, ¿qué son los colores?, ¿cómo se forman los arco iris?, etc. han preocupado al ser humano desde siempre, siendo la historia de los esfuerzos por responderlas un aspecto central de las ciencias físicas.
El estudio de la luz, denominado óptica, normalmente se divide en dos secciones: Propagación de la luz, en que se abordar la óptica sobre la base de la noción de rayo de luz (razón por la cual se denomina óptica geométrica) y Naturaleza de la luz, en el que se estudia la óptica considerando la luz como un fenómeno ondulatorio (en este caso hablaremos de óptica física).
A) La rapidez de la luz
Según las referencias históricas, quien primero intentó medir la rapidez de la luz fue Galileo Galilei (1564-1642) haciendo señales con una lámpara a otra persona situada a una distancia conocida. Si bien el método empleado por Galileo no era incorrecto, la gran rapidez con que viaja la luz, hacía impracticable el experimento.
El primero en medir esta rapidez, en 1675, fue el astrónomo danés el Olaf Römer (1644 – 1710) a través de la observación de los satélites de Júpiter. Ellos giran alrededor de este planeta demorando cierto tiempo en completar una órbita. Cuando el planeta se encuentra más alejado de la Tierra, el movimiento de sus satélites parece retrasarse debido a que la luz que proviene de ellos demora más tiempo en recorrer una distancia mayor. La precisión obtenida con este método no fue muy buena, pero tuvo el mérito de probar que la luz no se propagaba de forma instantánea.
En 1849, Hippolyte Fizeau (1819 – 1896) mide la velocidad de la luz dentro de un laboratorio. Su método consistió en interceptar un rayo de luz reflejado en un espejo con los dientes de una rueda giratoria. El resultado de las mediciones indicaba que la luz tendría una rapidez de 313.274 km/s en el aire. Años más tarde, en 1880, el físico estadounidense Albert Michelson (1852-1931) logra mayor exactitud con una técnica similar. Su método consiste en hacer girar con la rapidez exacta un sistema de espejos en el que se refleja un rayo de luz. Hoy se define la rapidez de la luz, en el vacío, como 299.792.456 m/s y se la designa con la letra “c”. Para efectos de cálculo, a menos que se indique algo diferente, empleamos la aproximación c = 3 x 108 m/s. Del mismo modo, aunque en el aire esta velocidad es levemente menro, también se emplea el mismo valor que par el vacío.
B) Los fenómenos de luz y sombra
Solamente mirando el borde de un objeto, como el marco de una puerta o una regla, sabemos si éste se ajusta o no a una recta. ¿Por qué? Porque intuitivamente partimos del hecho de que la luz se propaga en línea recta. Otra evidencia de su propagación rectilínea surge del análisis de las sombras. Si un punto P emite luz, una esfera opaca Q producirá en una pantalla o telón una sombra circular, tal como se ilustra en la figura.
Por otra parte, una mitad de la esfera estará iluminada y la otra estará sumida en la oscuridad. Si la fuente no es puntual, como se aprecia en la figura, veremos además una zona de penumbra.
Estos fenómenos de luz, sombra y penumbra son bastante habituales en la vida diaria, pero donde resultan espectaculares es en el ámbito astronómico, particularmente en el caso de los eclipses. En efecto, el día y la noche, las fases de la Luna y los eclipses de Sol y de Luna son fenómenos de luz y sombra. Las siguientes figuras ilustran estos fenómenos.
Fases Lunares
Las diferentes fases lunares para un observador en la Tierra, corresponden a la forma en que este satélite es iluminado por el Sol,
Fase Lunar
Las diferentes fases lunares para un observador en la Tierra, corresponden a la forma en que este satélite es iluminado por el Sol,
Eclipses
En la figura se observa como la luna proyecta su sombra sobre la Tierra, generando un eclipse de Sol.
Cuando la Tierra proyecta su sombra sobre la Luna, oscureciéndola, estamos frente a un eclipse lunar
Otro hecho que pone en evidencia la propagación rectilínea de la luz es la cámara oscura. Como es muy fácil de hacer, se recomienda que la construyas y realices algunas observaciones y experimentos con ella. Como se ilustra en la figura, basta una caja de cartón y un pedazo de papel diamante.
Bajo el mismo principio de la cámara oscura funcionan el ojo y la cámara fotográfica. Las principales partes del ojo humano se ilustran en la siguiente figura.
C) La reflexión de la luz y los espejos
La luz se refleja prácticamente en todas las superficies a las que llega. Gracias a este fenómeno es que podemos ver la mayoría de las cosas que nos rodean: los árboles, las montañas, los muebles y las personas. Sin embargo, no todos los objetos reflejan la luz de la misma forma. Algunos la reflejan más ordenadamente que otros. En la siguiente figura el caso (a) ilustra la reflexión especular y el (b) la reflexión difusa.
La diferencia entre estas dos reflexiones se debe a que en el caso (a) la superficie es muy lisa, mientras que en el caso (b) presenta irregularidades. La superficie de los metales puede pulirse para que se comporten como espejos. En el caso de los espejos domésticos lo que opera como tal es una delgada película de plata detrás de un vidrio.
Ley de la Reflexión
Con un experimento como el que se ilustra en la siguiente figura es fácil verificar la ley de reflexión.
Imágenes en espejos planos
Nos resulta muy natural ver imágenes en espejos planos, como cuando nos peinamos frente a un espejo o miramos el reflejo de un paisaje de un lago. Pero ¿cómo se explica lo que vemos?, ¿qué caracteriza a esas imágenes? Cada vez que nos formulemos preguntas como estas, las respuestas las encontraremos en la ley de reflexión.
La siguiente figura ilustra cómo se forma en un espejo plano la imagen (I) de un objeto como nuestra nariz (O).
Este tipo de imagen se denomina virtual, puesto que sólo la capta nuestro ojo. En efecto, esta imagen está formada la “proyección” que nuestro ojo hace de los rayos reales.
En contraposición existen imagenes a las que denominaremos reales, por estar conformadas por rayos de luz, y por lo tanto pueden proyectarse sobre una superficie o pantalla. Estas son las que se forman, por ejemplo, en el papel diamante de la cámara oscura o en un telón al proyectar una diapositiva. Otras características importantes de las imágenes que se producen en los espejos planos son: a) la distancia ente el objeto O y el espejo es igual a la distancia entre la imagen I y el espejo; b) el tamaño de la imagen es igual al tamaño del objeto; y c) la posición de la imagen es derecha en relación con el objeto; es decir, si la cabeza de la persona está arriba, la cabeza de la imagen también está arriba. No obstante, si la persona cierra el ojo derecho ¿qué ojo cierra la imagen? Comprueba estos hechos.
Imágenes en espejos curvos
El tipo de espejo curvo más importante es el parabólico. Esta es la forma que apreciamos en muchas antenas de radio, televisión y radiotelescopios, lo que no es un hecho casual.
Los espejos parabólicos pueden ser cóncavos o convexos. En ellos hay que reconocer un eje de simetría o eje óptico, un vértice (V) y un foco (F), los cuales se ilustran en los esquemas de la siguiente figura.
Si a estos espejos se envía un haz de rayos de luz paralelos al eje óptico, en el espejo cóncavo (figura a) se reflejan de modo que convergen a un punto, el cual corresponde a un foco real (F). En el caso del espejo convexo (figura b), divergen como si procedieran de un punto que está detrás del espejo y por el cual no pasan los rayos de luz, razón por la cual se denomina foco virtual (F). La distancia entre el vértice y el foco es la distancia focal y la designaremos f.
Las siguientes figuras ilustran el trazado de rayos que explica la formación de las imágenes en dos casos particulares. ¿Qué pasa con la imagen de la flecha si el objeto se aproxima al espejo?
Trazado de rayos para la formación de imágenes
D) La refracción y las lentes
D.1. Refracción en superficies planas
Por refracción entenderemos el paso de un rayo de luz de un medio a otro. Por ejemplo, cuando la luz pasa a través del vidrio de una ventana, se produce una refracción en ambas caras del vidrio, primero cuando pasa del aire al vidrio y, después, cuando pasa del vidrio al aire. La refracción va acompañada de un cambio en la rapidez de la luz y por lo tanto de su longitud de onda. Sin embargo, la frecuencia de la luz permanece constante. Por otra parte, si la luz incide sobre el segundo medio de propagación de manera oblicua, se observa un cambio en la dirección en que se propaga.
La figura ilustra, en una primera aproximación, este fenómeno para el caso en que el límite de separación entre los medios es una superficie plana. En relación a la Normal (recta perpendicular a esta superficie en el punto en que incide un rayo de luz), tiene sentido hablar de ángulo de incidencia ( angulo i) y ángulo de refracción ( angulo r). Es importante notar que estos ángulos no son iguales, excepto cuando angulo i = 0, de tal forma que angulo r .
Esta es la razón por la cual un lápiz sumergido en un vaso con agua pareciera estar quebrado o el fondo de un recipiente con agua lo vemos más arriba de su posición real.
Es fácil constatar que la refracción va siempre acompañada de una reflexión. En efecto, debes haber notado que el vidrio de una ventana se comporta como un espejo si en la habitación en que te encuentras hay mucha luz y afuera está muy oscuro. Si en estas condiciones aproximas un objeto, por ejemplo un dedo, a unos milímetros del vidrio y observas cuidadosamente, con seguridad verás dos o más imágenes de él.
Otro hecho curioso que se desprende del análisis de la figura anterior, es que cuando miramos a través del vidrio de una ventana, los objetos que vemos no están exactamente allí donde los vemos. Lo mismo ocurre con los astros. Tampoco su luz procede exactamente de donde parece venir, pues, como lo ilustra la siguiente figura, la luz de una estrella se refracta al ingresar a la atmósfera terrestre.
Además, como en la atmósfera hay turbulencias, la densidad del aire varía permanentemente, haciendo cambiar la dirección en que llegan los rayos de luz, con lo cual las estrellas parecen estar cambiando de posición. Este efecto se conoce como titilación.
D.2. La reflexión total interna
Lo más sorprendente de la refracción es que, en algunos casos, aun cuando un rayo de luz que viaja por un medio incida sobre una superficie de otro medio transparente, no pasa a él; es decir, no se refracta. Lo que hace en este caso es reflejarse como en el mejor de los espejos. Este fenómeno se denomina reflexión total interna y con seguridad lo has notado. Las siguientes figuras muestran algunos experimentos que ponen en evidencia este fenómeno.
Es importante comprender que esta reflexión total interna se produce solamente cuando el ángulo de incidencia supera cierto valor, conocido como ángulo límite, el cual depende de los medios. Por ejemplo, cuando los medios son vidrio y aire, este ángulo es de unos 42º (dependiendo principalmente del tipo de vidrio), y cuando es agua y aire, es de unos 48º.
Debido a la gran calidad de la reflexión que se produce, este fenómeno tiene muchas aplicaciones técnicas: los prismáticos poseen juegos de prismas. ¿Cuál es su utilidad allí? Investiga qué otros instrumentos ópticos también los poseen.
Sin embargo, la aplicación de mayor impacto es la fibra óptica. Ella se emplea hoy en día principalmente en comunicaciones, presentando grandes ventajas en esta materia. Se trata de delgadísimos “conductores de luz” de solo unas centésimas de milímetro de diámetro y de centenares de metros de longitud. Como lo ilustra la siguiente figura, la luz que ingresa por uno de los extremos de la fibra sale por el otro y no por sus paredes, pues en ellas se produce reflexión total interna.
Además, gracias a instrumentos construidos con fibras ópticas, los médicos pueden examinar los órganos internos de sus pacientes mediante una técnica que no resulta invasiva.
D.3. Las lentes
Examinaremos ahora lo que ocurre en las lentes. . Las lentes son dispositivos ópticos que permiten refractar la luz de manera regular, de acuerdo a ciertas reglas. En la siguiente figura se ha representado una lente y algunos de los elementos que nos interesan para comprender lo que ocurre en ellas: su eje óptico, el plano de la lente, sus focos (F) y su distancia focal (f).
Las superficies de las lentes pueden poseer distintas formas dando origen a distintos tipos de lentes, según lo indican los cortes (o perfiles) que se ilustran en la siguiente figura.
Lentes convergentes y divergentes
Aquellas lentes que poseen mayor espesor en el centro que en los bordes se denominan lentes convergentes y lentes divergentes aquellas en que ocurre lo contrario.
La siguiente figura muestra la diferencia fundamental entre estos dos tipos de lentes. En las convergentes, rayos de luz que llegan a ellas paralelos al eje óptico, convergen hacia el foco que está del otro lado de la lente. En las divergentes en tanto, divergen como si vinieran del foco que está del mismo lado.
Las siguientes figuras muestran el trazado de rayos que explica la formación de imágenes (I) para diferentes objetos.
D.4. Sistemas ópticos
Con dos o más lentes o con combinaciones de lentes, espejos y prismas, se pueden producir los efectos ópticos de mayor interés. Casos particularmente importantes son los del telescopio y del microscopio.
El primer telescopio, inventado por Galileo, es un sistema óptico muy simple formado por dos lentes: una convergente, donde llega la luz de los astros, denominada objetivo, y otra divergente, por donde se mira con el ojo, denominada ocular.
Otro telescopio de gran importancia posee dos lentes convergentes. Se diferencia del anterior porque produce imágenes invertidas, lo cual en astronomía carece de importancia. El trazado de rayos explica su funcionamiento a continuación.
Los dos telescopios descritos hasta aquí se denominan refractores. El telescopio inventado por Newton es de tipo reflector y el trazado de rayos de la figura siguiente explica su funcionamiento.
D.5. La óptica del ojo
Antes describimos la estructura del ojo y explicamos que el cristalino corresponde a una lente convergente y que en la retina se forma una imagen real e invertida de las cosas que vemos. Es importante darse cuenta de que podemos ver cosas distantes y cercanas. Las más cercanas las podemos enfocar bien cuando se hallan a poco más de 15 centímetros y las más lejanas a varios cientos de metros, dependiendo de las condiciones de visibilidad del aire. Esto significa que, para que la imagen quede correctamente enfocada en la retina, el cristalino debe cambiar su distancia focal. Ello lo consigue cambiando su curvatura por medio de los ligamientos. Como se indica en la siguiente figura, si lo que miramos está cerca, el cristalino reduce su distancia focal haciéndose más grueso en el centro (a) y a la inversa si el objeto está lejos (b).
Al ojo lo afectan muchas enfermedades, pero las más frecuentes consisten en la dificultad para enfocar correctamente las imágenes en la retina. Un caso es el de la miopía, en que la imagen se forma antes de la retina; y el otro caso es el de la hipermetropía, en que se forma después. Afortunadamente, ambos casos se corrigen muy fácilmente por medio de lentes. En el primer caso basta anteponer al ojo una lente divergente (a) y en el segundo, una lente convergente (b), según se indica en la siguiente figura.
Esquema de ojos con enfermedades visuales
No hay comentarios:
Publicar un comentario